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Abstract 8	  
We apply a fully autonomous icequake detection methodology to a single day of high-9	  
sample rate (200 Hz) seismic network data recorded from the terminus of Taylor Glacier, 10	  
ANT that temporally coincided with a brine release episode near Blood Falls (May 13, 11	  
2014). We demonstrate a statistically validated procedure to assemble waveforms 12	  
triggered by icequakes into populations of clusters linked by intra-event waveform 13	  
similarity. Our processing methodology implements a noise-adaptive power detector 14	  
coupled with a complete-linkage clustering algorithm and noise-adaptive correlation 15	  
detector. This detector-chain reveals a population of 20 multiplet sequences that includes 16	  
~150 icequakes and produces zero false alarms on the concurrent, diurnally variable 17	  
noise. Our results are very promising for identifying changes in background seismicity 18	  
associated with the presence or absence of brine release episodes. We thereby suggest 19	  
that our methodology could be applied to longer time periods to establish a brine-release 20	  
monitoring program for Blood Falls that is based on icequake detections. 21	  
 22	  
1. Introduction 23	  
Blood Falls is a release of hypersaline, subglacial brine at the surface of the Taylor 24	  
Glacier in the McMurdo Dry Valleys that provides an accessible portal into an Antarctic 25	  
subglacial ecosystem. Taylor Glacier is a cold−based glacier that overlies sedimentary 26	  
bedrock and a preglacial marine deposit providing the ultimate source for a basal brine 27	  
system. Little is known about the origin of this brine, the amount of time it has been 28	  
sealed below Taylor Glacier, or the extent to which the brine is altered as it makes its way 29	  
to the surface at Blood Falls or what triggers its episodic release exclusively at Blood 30	  
Falls. Recent geomicrobiological analysis of the outflow has revealed a unique 31	  
community of marine organisms that persist by cycling iron and sulfur compounds for 32	  
growth. Little is known about the hydrology of the glacier, the physical structure of the 33	  
subglacial habitat, or the mechanism of brine release to the surface.  34	  
 35	  
There are several motivating questions relating the seismicity of Taylor Glacier to 36	  
englacial or subglacial fluid flow. Previous geophysical work on Taylor Glacier has 37	  
related surficial melt input to a crack near Blood Falls, at a time when no brine release 38	  
was observed. Immediate, further work on Taylor Glacier seismicity seeks to answer the 39	  
following two questions: (1) “What is the seismic expression of brine outflow events 40	  
from Blood Falls?” and  (2) “How does seasonal seismicity related to summer melt 41	  
events compare with seismicity associated with brine outflow?” 42	  
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 43	  
Mission 44	  
To address our first objective, we determine if brine release episodes from Taylor 45	  
Glacier, ANT (Figure 1) have detectable seismic signatures. A positive identification of 46	  
such signatures requires that icequakes attributed to a documented brine release is 47	  
distinguishable from any expected background seismicity in timing and/or location. To 48	  
determine if such signatures exist, we first searched for repeatable icequakes indicative of 49	  
active collocated events on days that include known discharge events (e.g., Figure 2). We 50	  
propose to then search for these same, repetitive icequakes (multiplets) on days with no 51	  
known discharge events. We will accept the hypothesis that icequakes spatiotemporally 52	  
located with brine release episodes are strong indicators for brine seep unrest if these 53	  
icequakes are not observed during relative quiescence. We will reject this hypothesis if 54	  
such release points are associated with spatially coincident active seismicity, without any 55	  
observable surface expression. 56	  
 57	  
Here, we demonstrate an autonomous multiplet detector using a single day of seismic 58	  
network data recorded on day of year (DOY) 133, 2014. Our immediate goal is to 59	  
demonstrate a capability to evaluate repeating seismicity from Blood Falls rapidly and 60	  
thereby enable more focused analyses on the icequake locations and source magnitudes in 61	  
the presence and absence of coincident, brine discharge events. Future work will then be 62	  
devoted to a fully addressing the competing hypotheses (stated above). 63	  
 64	  
2. Data 65	  
Geophysical data were collected from Taylor Glacier (-77.721, +162.266) during 2013-66	  
2015 and included GPS, seismic, ground penetrating radar, time-lapse imagery, and 67	  
interferometric datasets. The near-terminus region, in particular, was instrumented with 68	  
three triaxial geophones (L-22 geophones) during the local summer of 2013 (Figure 1). 69	  
One of the three sensors (JESS) was installed within ~1 m deep ice pit, oriented to 70	  
geographical North and then backfilled with ice chips. The other receivers (CECE and 71	  
KRIS) was installed within ~0.5 m deep pits in the rocky ground, oriented to 72	  
geographical North, and then covered with rocky dirt. All instruments continuously 73	  
sampled ground velocity at 200 Hz using a Quanterra digitizer and logged data to a solid 74	  
state hard-drive. The data were retrieved the local summer of 2015. 75	  
 76	  
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 77	  
Figure 1 A 900m by 1100m overhead contour map of Taylor Glacier instrumented with 3 78	  
over-winter geophones. The glacier is interior to the blue curve; other geographical 79	  
features are located. 80	  
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 81	  
 82	  
Figure 2 Brine released from Taylor Glacier on May 13, 2014 (UTC). 83	  
 84	  
3. Methods 85	  
To identify repeating collocated seismic sources (e.g., Figure 4), we processed our 86	  
geophone data using a fully autonomous detection procedure. This procedure was 87	  
implemented sequentially in the four following steps. 88	  
 89	  
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 90	  
Figure 4 A pair of vertical channel multichannel seismic waveforms measuring ground 91	  
velocity recorded on DOY 133, 2014 during a brine release event. The waveforms were 92	  
recorded about 11 hours apart and show similar intra-event arrival times of equivalent 93	  
waveform features and highly correlated waveform shapes. These attributes suggest that 94	  
the waveforms originate from the same location and are triggered by similar focal 95	  
mechanisms. 96	  
 97	  
3.1 Seismic Event Identification  98	  
First, we identified individual seismic events by processing data from the vertical-channel 99	  
of each geophone using a noise-adaptive, digital power detector. This detector computes 100	  
a data statistic at each point in a geophone data stream by dividing an estimate of the 101	  
sample variance within a leading data window by an estimate of the sample variance 102	  
within a longer, following window i.e., the STA/LTA [Blandford, 1974]. To account for 103	  
statistically correlated background noise that is common to glaciogenic environments 104	  
(Figure 3),  105	  
 106	  
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 107	  
Figure 3 Noise variance estimates for each station in the network, computed in parallel 108	  
with the power detector, after removing event detections. Note the vertical axis log scale. 109	  
The noisiest station JESS is installed near the cliff face, where a substantial amount of 110	  
melt and cliff face flexure occurs; KRIS is installed near the cliff face of the Rhone 111	  
glacier; the quietest station (CECE) is installed farthest in-ice and away from any 112	  
vertical ice surface. 113	  
 114	  
we computed robust estimates for the degree-of-freedom parameters of the data statistic’s 115	  
F-distribution within each detection window (see Appendix A). These updated 116	  
parameters enabled us to dynamically adjust the detector’s event declaration threshold 117	  
within each window and maintain a constant, acceptably low false-detection probability. 118	  
We set this probability to 10-7 using the Neyman-Pearson decision rule [Kay, 1998; 119	  
Chapter 7], so that waveforms with an SNR of ~10 dB had a 95% probability of being 120	  
detected on a single geophone in average noise conditions. We document the 121	  
computational form of the detection statistic, the decision rule threshold, and the density 122	  
function’s shaping parameters in Appendix A (see also [Carmichael et al., 2015 a]). 123	  
Results for a single, 15-minute recording period are illustrated in Figure 5. 124	  
 125	  
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 126	  
Figure 5 Power detector (STA/LTA) results as applied to 15 minutes of seismic data 127	  
recorded at Taylor station CECE after local noon on DOY 133, which resulted in three, 128	  
vertical channel detections. Top: Vertical channel seismic data bandpass filtered 129	  
between 2.5 and 35 Hz. The red markers correspond to waveform detections and where 130	  
the STA/LTA statistic exceeded the event declaration value; the other waveforms visually 131	  
apparent in this panel are too emergent to trigger our detector. Middle: The STA/LTA 132	  
statistic computed from the waveform data using a 0.65 sec (130 sample) short-term 133	  
window and a 2.65 second (530 sample) long-term window; the red horizontal line shows 134	  
the declaration threshold for a 10-7 false alarm rate (η). Bottom: The histogram (gray) of 135	  
the STA/LTA statistic, superimposed with the hypothesized null distribution (red, dashed 136	  
curve). The shaping parameters for the predicted curve were estimated from N1 and N2 137	  
(the distribution’s degrees of freedom) and the red vertical line indicates the threshold 138	  
η from the middle panel; both estimates where made using the data shown here.   139	  
 140	  
3.2 Icequake Waveform Association 141	  
Next, waveforms detected on different geophones within a time interval less than the 142	  
expected transit time of a shear wave across the network were identified as the same 143	  
icequake (i.e., we performed waveform association). From these detections, we counted 144	  
events that were large enough to be associated on all three geophones, and binned this 145	  
count each hour to measure icequake seismicity (Figure 6). To quantify our confidence in 146	  
this estimate, we identified time-windows where the predicted null (signal-absent) F-147	  
distributional curve for the STA/LTA statistic matched the data statistic’s histogram with 148	  
≤ 20% root-means-square error. These signals provided our best hourly estimate of the 149	  
seismicity as well as a measure of confidence in our estimates (see also [Carmichael et 150	  
al., 2012; Carmichael et al., 2015a]). 151	  
 152	  
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 153	  
Figure 6 Power detector (STA/LTA) results for DOY 133, 2014. Seismic event frequency 154	  
(seismicity) binned and counted into 15-minute intervals. The blue curve shows the total 155	  
number of events that were detectable at one or more geophones. The purple curve shows 156	  
seismicity for events large enough to register detections on all three receivers. These 157	  
curves temporally correlate, and thereby suggest that strong events occur with weaker 158	  
events. 159	  
 160	  
3.3 Seismic Waveform Clustering  161	  
Third, we applied a hierarchical, complete-linkage clustering algorithm to all associated 162	  
waveforms following Carmichael et al. [2012]. To perform this clustering, we first 163	  
computed the correlation coefficient ρ between all possible pairs of associated 164	  
multichannel waveforms, which were cut five seconds before their power-detected pick 165	  
times and five seconds thereafter. A multichannel seismogram produced by a seismic 166	  
source, sampled at interval Δ𝑡, is represented by a data matrix as follows: 167	  
 168	  
 𝑾 𝑡 = 𝒘! 𝑡 ,… ,𝒘! 𝑡 ,… ,𝒘!(𝑡) ,  for  𝑡 = 𝑡!,   𝑡! + Δ𝑡,… ,   𝑡! + 𝑁Δ𝑡. (1) 
   
In Equation (1), matrix column 𝒘!(𝑡) is an N-sample seismogram from geophone k, 169	  
recorded over T-seconds (10 sec here) from absolute reference time t0 so that 𝒘!(𝑡! +170	  
𝑛Δ𝑡) refers to sample n from geophone k. The correlation coefficient 𝜌!,! that quantifies 171	  
the similarity between two different multi-channel signals 𝑾(!) 𝑡  and 𝑾(!) 𝑡 , recorded 172	  
from two different events, is derived from a maximum likelihood estimate [e.g., Harris, 173	  
1991; Carmichael et al., 2015 b] given by: 174	  
 175	  
 

𝜌!,! = max
!!

tr   𝑾 ! (𝑡 + Δ𝑡)𝐓𝑾(!)(𝑡)
𝑾(!)(𝑡) ! 𝑾(!)(𝑡) !

, 
(6) 
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where 𝑾(!) 𝑡
!

 is the matrix Frobenius norm and tr(𝑾(!) 𝑡 ) is the matrix trace of 176	  
𝑾(!) 𝑡  (k = 1, 2). If a group of N multichannel waveforms correlated pair-wise above a 177	  
threshold of ρ 0 = ½ so that every waveform correlated well with every other waveform in 178	  
that group, we placed the waveforms into a cluster. We further constrained waveforms to 179	  
be excluded from membership between clusters, e.g., no waveform could belong to more 180	  
than one cluster. After our set assignment, waveforms within each cluster were then 181	  
stacked (coherently averaged) to form a template waveform for a multichannel 182	  
correlation detector. This process produced 20 distinct clusters for DOY 133, 2014 that 183	  
each contained between seven and two multichannel waveforms with high mutual 184	  
correlation. We then coherently averaged the waveforms composing each cluster to 185	  
construct a single waveform representative of the signals therein. 186	  
 187	  
3.4 Waveform Correlation Detection 188	  
To search for similar waveforms not initially identified with our power detector and 189	  
assigned to a cluster, we implemented a multichannel correlation detector.  Multichannel 190	  
correlation detectors compare template waveforms recorded from a given reference event 191	  
with noisy data to identify similarly shaped “target” waveforms using a sample 192	  
correlation coefficient. This coefficient generalizes the correlation 𝑠 𝑥  between pairs of 193	  
single-channel waveforms to pairs of multichannel waveforms that represent 194	  
measurements of seismic velocity recorded by a clock-synchronized, L-element seismic 195	  
network [Harris, 1991; Gibbons and Ringdal, 2006]. These detectors effectively identify 196	  
sources known as “seismic multiplets”, which comprise clusters of variable-magnitude 197	  
earthquakes (or icequakes) that reoccur as distinct events, have similar hypocenters, and 198	  
produce highly correlated seismograms [e.g., Moriya et al., 2003]. Our correlation 199	  
detector tests the correlation between a multichannel template waveform 𝑾 𝑡  (taken 200	  
from a cluster) and commensurate data stream matrix 𝑿 𝑡  against a computed threshold 201	  
η according to the following decision rule: 202	  
 203	  

 𝑠 𝑥 =
tr   𝑾(𝑡 + Δ𝑡)𝐓𝑿(𝑡)
𝑾(𝑡 + Δ𝑡) ! 𝑿(𝑡) !

  

𝐻!
>
<
𝐻!

  𝜂 (2) 

 204	  

where 𝑾 𝑡 ! is the matrix Frobenius norm and tr(𝑾 𝑡 ) is the matrix trace of 𝑾 𝑡  (k 205	  
= 1, 2), as before. The hypothesis 𝐻! below the conditional inequality signifies that 206	  
𝑿 𝑡   consists of Gaussian noise (𝑿 𝑡 = 𝑵(𝑡)) when  𝑠 𝑥 < 𝜂; the hypothesis 𝐻! then 207	  
signifies that 𝑿(𝑡) consists of a scaled-copy of the template waveform 𝑾 𝑡  buried in 208	  
Gaussian noise (𝑿 𝑡 = 𝐴 ∙𝑾 𝑡 +𝑵(𝑡)) if 𝑠 𝑥 > 𝜂, where  𝐴 is a scalar. However, 209	  
noisy non-target waveforms originating from background seismicity may also be 210	  
recorded and misdetected.  Such false-detections occur if a signal within the data stream 211	  
is sufficiently coherent with the template waveform that the correlation 𝑠 𝑥  exceeds the 212	  
prescribed threshold for event declaration (𝜂 in Equation 2). In practice, this threshold so 213	  
high that white noise has a very low chance of generating false detections, and therefore 214	  
spuriously high correlation values are usually induced by nearly monochromatic noise or 215	  
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non-target seismicity. Alternatively, target waveforms that are (nearly) collocated with 216	  
the template source may still generate lower-than-predicted cross-correlation (𝑠 𝑥 < 1) 217	  
if the underlying signals exhibit incoherence with the template signal due to differences 218	  
in radiation pattern. 219	  

220	  
When only subsets of network geophones were logging data in a given period, only 221	  
matrix columns containing operational stations were compared. We only included event 222	  
detections where 𝑠 𝑥 > 1/2 for analyses (Figures 7 a,b; red lines) after visual inspection 223	  
suggested that waveforms sharing lower correlation likely had dissimilar sources or focal 224	  
mechanisms, or that the waveform SNR was too low for interpretation. This correlation 225	  
threshold gave a negligible false-alarm on noise probability, as determined by the 226	  
correlation-coefficient’s empirical null distribution [e.g., Weichecki-Vergara, 2001; 227	  
Carmichael, 2013] parameterized by a mean effective degrees of freedom parameter: 228	  

229	  

𝑓! 𝑠 𝑥 ;   𝐻!   𝑑𝑆
!

!/!
~10!!"" (3) 

 230	  
This indicates that background noise has effectively zero probability of triggering our 231	  
detector, so that only partially coherent background seismicity from other (non-target) 232	  
earthquakes (or icequakes) likely generate false detections (Figures 7 a,b; bottom panels) 233	  

234	  
Having established our detector thresholds, we processed all nine channels (three 235	  
stations) of our data with each cluster-template. This processing identified 140 additional 236	  
waveforms (Figure 8) among 14 different clusters (multiplet sequences) that satisfied 237	  
each respective correlation detector’s decision rule (e.g., Equation 2).  238	  

239	  

240	  
Figure 6a An example of processing data recorded at the Taylor network in 2014 with a 241	  
correlation detector that includes a template selected from the coherent waveform stack 242	  
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of the most populous cluster. Top: A nine-channel data stream (black) recorded on DOY 243	  
133, 2014 during a brine release episode. The purple data segment shows the template 244	  
waveforms superimposed on the black data-stream and temporally aligned at the peak 245	  
correlation value. The red markers indicate the time of an event-declaration. Middle:  246	  
The correlation statistic s(x) computed by scanning the template waveform against the 247	  
data stream at top. The red, horizontal line indicates the threshold for event declaration, 248	  
determined by an effectively zero false alarm on noise probability constraint, as 249	  
computed from the signal-absent distribution using the Neyman Pearson criteria. 250	  
Bottom: The histogram computed from the correlation statistic time series (gray) 251	  
superimposed with the theoretical null distribution (black curve) shaped by an effective 252	  
degrees of freedom parameter NE. The red vertical line shows the threshold for event 253	  
declaration, consistent with an effectively zero right-tail probability as computed from 254	  
the black curve. The theoretical distribution fits the observed histogram with a 6% 255	  
relative error. 256	  

257	  

258	  

Figure 6b A time-limited view of Figure 6a. The top plot now shows the template 259	  
waveform (purple) superimposed on top of the target data (black). The middle plot shows 260	  
the correlogram near peak correlation, well above background correlation values. 261	  

262	  
4.1 Results and Conclusions 263	  
We have analyzed seismic data recorded on Taylor Glacier, ANT during a single day 264	  
with a documented brine release episode (DOY 133, 2014).  Our analyses focused on 265	  
quantifying background seismic activity recorded by a small, three-element triaxial 266	  
seismic network and identifying similar waveforms ostensibly triggered by spatially 267	  
localized, repeating brittle deformation of glacial ice. Our fully autonomous signal 268	  
detection methodology (1) identified seismic events using a noise-adaptive power 269	  
detector based on statistically significant seismic waveforms; (2) associated waveforms 270	  
that were observable on three or more station; (3) clustered associated waveforms with a 271	  
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complete linkage clustering algorithm designed for glacial ice to identify seismic 272	  
multiplets; (4) coherently stacked all members of each cluster population to form a 273	  
multiplet template; and (5) used these templates in a nine channel correlation detector to 274	  
identify additional, repeating seismic events with similar waveforms and source 275	  
locations. Applied to our dataset, we identified 127 network-associated seismic events on 276	  
DOY 133, 2014 that were detectable on all three stations (Figure 6, purple curve) and 277	  
observed no false alarms on background noise. This seismic event population comprised 278	  
53 events (~40% of the total, power-detected event population) that could be assigned to 279	  
20 unique multiplet sequences (clusters). To test whether the members of the three most 280	  
populous multiplet populations were glaciogenic, we compared observed p-wave arrival 281	  
times for these events with forward modeled travel times between each receiver for 282	  
several synthetic sources. Based on these relative arrival times, we conclude that the 283	  
observed sources could not be North of station JESS and must be glaciogenic and are 284	  
therefore icequakes.  285	  

Having established these multiplets as likely icequakes, we found 140 additional 286	  
waveforms with membership to 14 of these 20 clusters by using the mean waveform from 287	  
each icequake cluster as a template (Figures 7 a,b; purple traces) within a nine-channel 288	  
correlation detector. Repeating seismic events therefore composed a comparable 289	  
percentage (> 55%) of the total detected, icequake population (Figure 8). The most 290	  
populous of the resultant clusters included 27 distinct seismic events. The waveforms in 291	  
this cluster were highly correlated, and showed an average template-waveform 292	  
correlation coefficient 𝑠 𝑥 ≅ 0.64 and peak correlation value of max 𝑠(𝒙) ≅ 0.87 293	  
(Figure 9, left panel). Some of this observed variability resulted from additional signal 294	  
phases that may be attributed to Rayleigh waves, or closely spaced secondary events 295	  
(Figure 9; waveforms following main phase in right panel at ~3.7 sec). The remaining 296	  
variability reflects lower signal-to-noise characteristics and interference from narrowband 297	  
noise that may be induced by thermal stresses in the shallow ice. Cumulatively, these 298	  
highly correlated waveforms represent activation of repeatable seismic sources, like large 299	  
englacial fractures, that were spatially localized and had identical (or nearly so) focal 300	  
mechanisms. While these results are limited to one day, they may be applied to a longer 301	  
data set to include background seismicity and additional brine release episodes. If 302	  
additional work demonstrates that such icequakes indicate brine release, we suggest 303	  
applying our method to an autonomous seismic monitoring program of Blood Falls. 304	  

 305	  
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 306	  

Figure 8: Seismicity from single-station event detections on DOY 133, 2014 compared 307	  
against multiplets identified with a correlation detector. In both cases, seismicity is 308	  
counted and binned into 15-minute intervals. The blue curve shows the total number of 309	  
events that were detectable on at one or more geophones. The red curve shows timing of 310	  
events that correlated with any cluster template waveform. The timing of multiplets peak 311	  
coincidentally with maxima in seismicity. 312	  
 313	  
4.2 Future Work 314	  
Our future work will be devoted to two primary tasks. The first task will be processing 315	  
our entire data set using the method illustrated here, so that (a) days that include brine 316	  
release can be compared against each other for location, timing and magnitude and (b) 317	  
days that include no observed brine release episodes can be compared against ambient, 318	  
background seismicity at Taylor Glacier. Our second task will be locating these repeating 319	  
events. While our network comprises only three receivers compared to four unknown 320	  
hypocentral parameters, we can eliminate time and fix depth in applying hypocentral 321	  
regression. We can fix depth since our network has relatively poor depth resolution, and 322	  
any parameter estimate will likely be unreliable. We can eliminate time arithmetically by 323	  
using a centered and scaled version of the regression equations (Equation 2 of 324	  
[Carmichael et al., 2012]). We propose to first locate the template waveform’s source (or 325	  
the detected waveform with the highest SNR), and thereafter locate the events it identifies 326	  
as similar. The mean hypocentral location between the template and following 327	  
(correlation detected) events will then provide a lower-variance estimate for spatially 328	  
localized multiplet source. 329	  
 330	  
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 331	  

Figure 9 Correlation detected waveforms for three separate multiplet sequences. In each 332	  
panel, the purple traces show waveforms identified by a correlation detector template 333	  
(black) that was obtained by coherently stacking associated waveforms within a cluster. 334	  
The left most panel shows waveforms associated with the most populous cluster, which 335	  
contained 7 events; the correlation detector identified an additional 20 icequake events 336	  
that triggered similar waveforms (27 purple waveforms plotted). The sources producing 337	  
this multiplet sequence appear to be spatially separated from the sources producing the 338	  
multiplets in the middle and right panel, based on the relative arrival times of the 339	  
waveforms at each receiver. 340	  
 341	  
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Appendix A: Power Detectors 386	  
Icequakes must have sufficiently large magnitudes to generate ice motion that is 387	  
detectable by the geophones within a network. Weaker or remote icequakes will produce 388	  
smaller displacement amplitudes at the source that are statistically more difficult to 389	  
distinguish from the expected amplitude of background noise recorded by geophones in 390	  
the far field. To discriminate icequakes from such noise, a power detector evaluates a 391	  
statistic 𝑧! that is computed from a ratio of short-term and long-term averages 392	  
(STA/LTA) of signal power [Blandford, 1974]. This statistic is derivable from a 393	  
generalized likelihood ratio test [Carmichael, 2013] and is expressed at sample k, within a 394	  
detection window containing statistically stationary noise, as: 395	  
 396	  
 

𝑧! =
1
𝑆

𝑥!
𝜎

!
!!!!!!!

!!!

÷
1
𝐿

𝑥!
𝜎

!
!!!

!!!!!!!

 
(A.1) 

 397	  
where 𝑥! is sample 𝑘 of the observed seismogram, S is the leading, short window length 398	  
in samples, L is the following long window length in samples, and 𝜎 is the standard 399	  
deviation of background noise in the current detection window; while 𝑧! is independent 400	  
of 𝜎, we have retained it here for clarity.  401	  
 402	  
The statistic 𝑧! has two distinct probability distribution functions; one applicable to the 403	  
case of absent signal (a central F distribution), and one applicable to the case of present 404	  
signal (a non-central F distribution); their analytical forms are described in several places 405	  
(e.g., Kay, 1998; Carmichael 2013). Deciding an icequake has occurred is equivalent to 406	  
choosing the distribution function that explains the measured value of the STA/LTA 407	  
statistic at a prescribed probability. The signal-present distribution is parameterized by a 408	  
so-called non-centrality parameter λ that is proportional to the waveform signal-to-noise 409	  
ratio (SNR), which is zero for the signal absent case. This parameter is defined by: 410	  
 411	  
 

λ =
𝐴!
𝜎

!

.
!

!!!

 
(A.2) 

 412	  
In Equation A.2, 𝐴! is the true (noise-free) waveform amplitude at sample 𝑘, which is 413	  
related to the noise-contaminated data through 𝑥! = 𝐴! + 𝑛!, where 𝑛! is a sample of 414	  
zero-mean background noise with standard deviation 𝜎!. Increasing values of λ (relative 415	  
to zero) result in decreased overlap between the signal-present and signal-absent 416	  
distribution and makes correctly discriminating between noise and an icequake more 417	  
probable. A 0.95 probability of detecting an icequake at sample k that produces parameter 418	  
λ is then obtained by integrating the probability density function over the detector 419	  
threshold 𝜂 consistent with a 10!! detection probability: 420	  
 421	  
 

0.95 = 𝑓!! 𝑧!;   𝜆,𝑁!,𝑁!   𝑑𝑧!
!

!
 

where: 

(A.3) 
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10!! = 𝑓!! 𝑧!;   𝜆 = 0,𝑁!,𝑁!   𝑑𝑧!
!

!
 

 422	  
In Equation A.3, 𝑓!! 𝑧!;   𝜆,𝑁!,𝑁!    is the signal-present F distribution, and 𝑓!! 𝑧!;   𝜆 =423	  
0,𝑁!,𝑁!    is the signal absent F distribution (Figure A.1, bottom); each are parameterized 424	  
by two degree-of-freedom parameters 𝑁!and  𝑁! that are respectively equal to S and L for 425	  
white noise, but substantially less for real, temporally correlated noise. We estimate these 426	  
parameters from our data using the mean and variance of the STA/LTA statistic: 427	  
 428	  
 E 𝑧 =

𝑁!
𝑁! − 2

var(𝑧) =
2𝑁!! 𝑁! + 𝑁! − 2
𝑁!(𝑁! − 2)!(𝑁! − 4)

 

(A.4) 

 429	  
Using Equation A.4, we computed the sample mean and sample variance in place of the 430	  
true mean E(z) and variance var(z) within each one-hour detection window using 431	  
thousands of samples of 𝑧!, and then solved for 𝑁! and  𝑁!.  432	  
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